goto; « ¥/ prps
Life After Business Objects

Confessions of an OOP veteran
Vagif Abilov

#GOTOoslo

This talk isn't about
a war for the one and only
best programming paradigm

We will focus on what may
lead pragmatic developers
(“pragmatists in pain”)
to the paradigm shift

* Eric Sink "Why your F# evangelism isn't working”
https://ericsink.com/entries/fsharp chasm.html

https://ericsink.com/entries/fsharp_chasm.html

Our product

KTV

: Mlt‘p
WAL

e Tl v

PR R 8

== = e m W/Q'I

Let’s begin with basics:
Modeling a point

Dmitry Ivanov (JetBrains)

Immutable Collections
in .NET

class Point {

int X { get; set; }
int Y { get; set; }

Point(int x, inty) { X = x5 Y

void IncreaseX (int xOffset) {
void IncreaseY (int yOffset) {

¥

X
Y

y }

+= XOffset; }
+= yOffset; }

class Point {

int X { get; 5}
int Y { get; 5}

Point(int x, inty) { X = x5 Y

IncreaseX (int xOffset) {
IncreaseY (int yOffset) {

X
Y

y }

+= XOffset; }
+= yOffset; }

class Point {

int X { get; 5}
int Y { get; 5}

Point(int x, int y) { X = x5 Y

IncreaseX (int xOffset) {
IncreaseY (int yOffset) {

int GetHashCode() {..}
bool Equals(object other) {..}

¥

< X

y }

+= XOffset; }
+= yOffset; }

10

class Point {

readonly int X;
readonly int Y;

Point(int x, inty) { X =x; Y=y }

Point IncreaseX (int xOffset) => new Point(x + xOffset, y);
Point IncreaseY (int yOffset) => new Point(x, y + yOffset);

int GetHashCode() {..}
bool Equals(object other) {..}

¥

11

Data structures in F#

type Point = {
X : int
Y : int

Data structures in F#

type Point = {

X : int

Y : int
}
letp={X=1; Y=21}
let g = { p with X = p.X

Consequences of

S hgRrrstake

insufficient experience

Principle difference in
initial sets of defaults
between OOP and FP

Object Oriented Programming

Empowers
through
variety of choices

Functional Programming

Prevents
UNCONSCIOUS
mistakes

Functional Programming

Path
to
concurrency

Amdahl’s law in action

If you have 10 processors
but only 40% of your code can be parallelized,
you will achieve performance gain of 1.56

Time to have a closer look at business objects

class Point {

readonly int X;
readonly int Y;

Point(int x, inty) { X =x; Y=y }

Point IncreaseX (int xOffset) => new Point(x + xOffset, y);
Point IncreaseY (int yOffset) => new Point(x, y + yOffset);

int GetHashCode() {..}
bool Equals(object other) {..}

¥

21

class Point {

public
public

public

public
public

public
public

¥

readonly int X;
readonly int Y;

Point(int x, int y) { X = x; Y =

Point IncreaseX (int xOffset) =>
Point IncreaseY (int yOffset) =>

int GetHashCode() {..}
bool Equals(object other) {..}

y }

(]
(XYY ,
(XX} ,

22

Why public?

class Point {

public
public

public

public
public

readonly int X;
readonly int Y;

Point(int x, inty) { X =x; Y=y }

Point IncreaseX (int xOffset) =»>
Point IncreaseY (int yOffset) =>

int GetHashCode() {..}
bool Equals(object other) {..}

L]
eoe J
L]
eoo J

23

Point

24

Inheritance?

class Point {
public readonly int X;
public readonly int Y;

}
class EditablePoint : Point {

public Point IncreaseX (int xOffset) =>
public Point IncreaseY (int yOffset) =>

}

(XY ,

(XY ,

25

Point J

T

|

Editable
Point

26

Alternative

Move methods that change the state
to a separate class
a.k.a. PointManager

Alternative

Move methods that change the state
to a separate class
a.k.a. PointManager

This is essentially abandoning Point as business object

F# modules as business logic scopes

type Point = {
X : int
Y : int

}

module Point =
let increaseX v p
let increaseY v p

{ p with X =
{ p with Y

F# modules as business logic scopes

type Point = {
X : int
Y : int

}

module Point =
let increaseX v p = { p with X =
let increaseY v p = { p with Y

let v={X=5Y=6}
let z = p |> P01nt increaseX 1

Controlling business logic visibility via modules

type Point = {..}

module PointUpdate =
let increaseX v p
let increaseY v p

{ p with X
{ p with Y

open PointUpdate

let v
let z

{ X=5;Y=6 1}
p |> increaseX 1

Business objects

D s WK SR, TR
‘ 7 |

_'JHIWR

\

33

Scott Wlaschin «Domain Modeling Made Functional»

The

H%%ggar%gmners

Domain Modeling
Made Functional

Tackle Software Complexity with
Domain-Driven Design and F#

N
Yy

Scott Wlaschin

edited by Brian MacDonald

35

Order processing

Unvalidated + TotalPrice Ship
order

Validate

+ TrackingUrl

Cancel

Make quotation
Cancelled
order

+ Reason

class Order {

decimal TotalPrice { get; }
Uri TrackingUrl { get; }
string CancellationReason { get; }

bool IsValidated { get; }
bool IsShipped { get; }
bool IsCancelled { get; }

}

37

class Order {

decimal TotalPrice { get; }
Uri TrackingUrl { get; }
string CancellationReason { get; }

bool IsValidated { get; }
bool IsShipped { get; }
bool IsCancelled { get; }

void Validate();
void Ship();
void Cancel();

}

38

class Order {

decimal TotalPrice { get; }
Uri TrackingUrl { get; }
string CancellationReason { get; }

bool IsValidated { get; }
bool IsShipped { get; }
bool IsCancelled { get; }

}

class OrderManager {

void Validate(Order order);
void Ship(Order order);
void Cancel(Order order);

¥

39

class Order {

decimal TotalPrice { get; }
Uri TrackingUrl { get; }
string CancellationReason { get; }

bool IsValidated { get; }
bool IsShipped { get; }
bool IsCancelled { get; }

}

class OrderManager {

void Validate(Order order);
void Ship(Order order);
void Cancel(Order order);

¥

Joe Armstrong on OOP

Since functions and data
structures are completely
different types of animal it is
fundamentally incorrect
to lock them up in the
same cage

class UnvalidatedOrder { .. }
class ValidatedOrder { .. }

class PricedOrder {
.. decimal TotalPrice { get; }

}

class ShippedOrder {
.. Uri TrackingUrl { get; }

}

class CancelledOrder {
. string Reason { get; }

}

class OrderValidator {
ValidatedOrder
ValidateOrder(...)
}

class QuotationMaker {
PricedOrder
MakeQuotation(..)
}

class OrderDispatcher {
ShippedOrder
ShipOrder(..)

42

Domain modeling in F#

type OrderDetails = string list

type UnvalidatedOrder = {
Details : OrderDetails
}

type ValidatedOrder = {
Details : OrderDetails
ValidationTime : DateTimeOffset

Domain modeling in F#

type PricedOrder = {
Details : OrderDetails
TotalPrice : decimal

¥

type ShippedOrder = {
Details : OrderDetails
Uri : TrackingUrl

¥

type CancelledOrder = {
Details : OrderDetails
Reason : string

Domain modeling in F#

module =

let validateOrder (order : UnvalidatedOrder) =
{ Details = order.Details
ValidationTime = DateTimeOffset.Now }

let priceOrder totalPrice (order : ValidatedOrder) =
{ Details = order.Details
TotalPrice = totalPrice }

let shipOrder trackingUrl (order : PricedOrder) =
{ Details = order.Details
TrackingUrl = trackingUrl }

Domain modeling in F#

open

let order =
{ Details = ["book"] }
> validateOrder
| > priceOrder 9.90m
|> shipOrder (Uri "http://www.orders.com/40395874")

Algebraic data typesin F#

type ExpiryDate = {
Year : int
Month : int

¥

type CardNumber

CardNumber of string

type PaymentCard = {
CardNumber : CardNumber
ExpiryDate : ExpiryDate
}

type BankAccount = BankAccount of string

Algebraic data types in F#

type FundingSource =
| PaymentCard of PaymentCard
| BankAccount of BankAccount

let isSourceValid source =
let now = DateTime.Now
match source with
| PaymentCard x ->
X.ExpiryDate >= { Month
Year =
| BankAccount -> true

now.Month
now.Year ;

Active patterns in F#

let (|Even|Odd|) n =
if n% 2 =0 then Even

else 0Odd

let printNumberKind n =
match n with
| Even -> "Even"
| odd -> "odd"

Nulls should be avoided
not just by replacing them with options,
but avoiding options wherever possible

Yaron Minsky

Make illegal state
unrepresentable

https://blog.janestreet.com/effective-ml-revisited/

https://blog.janestreet.com/effective-ml-revisited/

Optional values are fine
at domain boundaries
but corrupt its business logic

Why do we need to pass optional values?

*To cover multiple scenarios in a single handler
*Should the handler be split into several?

*To forward it to a next handler in the business logic chain
*Should the data that is unused in the current handler be hidden from it?

Maybe Not - Rich Hickey

Rich Hickey

DURHAM NC | NOV 29TH - DEC 15T

CLOJURE CONJ 2018

() POWERED BY [] cognitect

Rich Hickey — Maybe Not

*Maybe/Either are not type system’s ‘or/union’ type
*Rather, evidence of lack of first-class union type

*Either is a malarkey misnomer

*Not associative/commutative/composable/symmetric

https://www.youtube.com/watch?v=YR5WdGrpoug

https://www.youtube.com/watch?v=YR5WdGrpoug

Rich Hickey — Sets vs Slots

Could we make it in C#?

Absolutely!
But...

What main advantage did we gain with F#?

Shortened the cycle
from specification
to production

Impact of F# on feature development cycle

1. Algebraic types help to better express functional
requirements

Impact of F# on feature development cycle

1. Algebraic types help to better express functional
requirements

2. Small immutable records are efficient to represent data
structures for each stage of the business process

Impact of F# on feature development cycle

1. Algebraic types help to better express functional
requirements

2. Small immutable records are efficient to represent data
structures for each stage of the business process

3. Elimination of nulls and (mostly) options keeps business
logic compact and straightforward

Impact of F# on feature development cycle

1. Algebraic types help to better express functional
requirements

2. Small immutable records are efficient to represent data
structures for each stage of the business process

3. Elimination of nulls and (mostly) options keeps business
logic compact and straightforward

4. Use of modules expose right business logic for each scope
— opposed to class public methods visible to every class
observer

Impact of F# on feature development cycle

1. Algebraic types help to better express functional
requirements

2. Small immutable records are efficient to represent data
structures for each stage of the business process

3. Elimination of nulls and (mostly) options keeps business
logic compact and straightforward

4. Use of modules expose right business logic for each scope
— opposed to class public methods visible to every class
observer

Thank you!

Vagif Abilov
Consultant in Miles
Norway - Russia

Github: object
Twitter: @ooobject
vagif.abilov@mail.com

mailto:vagif.abilov@mail.com

